
The e-MERLIN CASA Pipeline

Javier Moldon
January 25, 2018

Contents

1. Introduction to the e-MERLIN CASA Pipeline (eMCP)
2. Pipeline procedures and products
3. Current purpose and limitations. Future plan
4. Product examples
5. Pipeline performance

1. Introduction to the e-MERLIN CASA Pipeline (eMCP)

The e-MERLIN CASA Pipeline is a python package composed of different modules that can be run
together sequentially to calibrate an e-MERLIN data set, producing calibration tables, calibrated data,
assessment plots and a summary weblog. In the most general mode, it can take FITS-IDI files
provided by the observatory and will produce a calibrated data set and initial crude images to check
the quality of the observation. It can process automatically L and C band continuum e-MERLIN data
sets.

The objective is to provide a common framework with standard, optimized calibration rules specific to
e-MERLIN. It is meant to be used by any user interested in reducing e-MERLIN data. The key idea is
that the pipeline provides and easy, ready-to-use toolkit that delivers calibrated data in a consistent,
clear and repeatable way. We tried to keep the dependencies at minimum so all external users can use
it. The only requirements are CASA (v4.7+), python (v2.7), and optionally AOFlagger (to conduct 1

automatic RFI flagging). All scripts of the pipeline can be downloaded from the open github
repository and used immediately as no further installation is required. 2

The pipeline is based on simplicity so it can work with minimum input from the user: usually the
minimum input required is a project name, and the name of the sources to used. The pipeline accepts
other common but optional parameters like the reference antenna or a list of flagging commands to
discard additional bad data. The rest of the parameters are fixed by default and have been chosen to
produce a successful calibration for the majority of the standard e-MERLIN operations (see
limitations below).

To run the pipeline the user just needs to fill a pre-designed inputs file with the basic parameters and
with the list of steps to run, and execute the pipeline as a CASA script from the terminal. Apart from
the different outputs (data, calibration table, plots, etc), the pipeline will produce a text log with
detailed information of what has been executed and an html weblog containing all results.

1 ​https://sourceforge.net/p/aoflagger/wiki/Home/
2 ​https://github.com/e-merlin/CASA_eMERLIN_pipeline

https://sourceforge.net/p/aoflagger/wiki/Home/
https://github.com/e-merlin/CASA_eMERLIN_pipeline

The development of the eMCP has been coordinated openly on github. That means that the code for
all versions of the pipeline are freely accessible. Github also includes an issue tracker so it is easy to
open a ticket with any question or request, and also to visit all the previous history of tickets. Github
also hosts the pipeline documentation with detailed explanation of all scripts, steps, parameters and 3

products of the pipeline. This platform is ideal to develop and improve the pipeline, opening the
possibility to implement new features, fix bugs, and have feedback from the community at any time.

2. Pipeline procedures and products

The pipeline procedures can be divided in two main blocks. The first pre-processing part is meant to
transform a series of raw FITS-IDI files into a ready-to-use measurement set (MS). The second part
will conduct standard calibration on continuum data. This is a brief summary list of the main steps
conducted in each part:

- Pre-processing
- Convert FITS-IDI into MS.
- Fix visibility UVW values, flag autocorrelations.
- Apply Hanning smoothing if needed.
- Autoflag data to remove RFIs using Aoflagger. This step uses specific strategies for

different types of sources and can work with C and L band data.
- Remove data based on a-priori e-MERLIN knowledge: antenna slewing, edge

channels, etc.
- Optionally read list of flag commands prepared by the user.
- Average data to a standard channel and time resolution.
- Produce visibility plots (amplitude and phase vs time and frequency) for all baselines

and sources.
- Save flag status

- Calibration
- Optionally read additional list of flag commands prepared by the user.
- Initialize source models, using observatory models for the flux scale calibrator 3C286.
- Obtain bandpass table.
- Automatically flag data using ​‘tfcrop’​ mode in CASA task ​flagdata​.
- Obtain delay calibration.
- Obtain phase and amplitude gain corrections.
- Find absolute flux density scale by bootstraping from 3C286.
- Re-calculate bandpass table including spectral index information.
- Re-calculate amplitude calibration including spectral index information.
- Apply all previous calibration to the data.
- Automatically flag data using ​‘rflag’ mode in the CASA task ​flagdata ​using corrected

data.
- Produce corrected visibility plots (amplitude and phase vs time and frequency) for all

baselines and sources.
- Produce automatic images of target and phase reference source to assess quality of the

calibration.

3 ​https://github.com/e-merlin/CASA_eMERLIN_pipeline/blob/master/documentation/docs.md

https://github.com/e-merlin/CASA_eMERLIN_pipeline/blob/master/documentation/docs.md

- Produce weblog organizing all the information produced by the pipeline in an html
file.

All calibration steps will also produce plots of the calibration tables, and the users can choose if they
want to apply the calibration up to a particular step in the process. Therefore, the user can easily find
solutions, apply them and check the effect on any step, and repeat the operation as many times as
needed without disturbing the data and without having to restart the process from the beginning.

One of the products of the pipeline is the weblog, a set of html pages that summarizes the observation
and the pipeline process and shows assessment plots. It is organized in five pages:

- Home​. A summary of the technical specifications of the observation (dates, frequency
configuration, etc).

- Observation summary​. Quick access to source names, source separations, scan distribution,
frequency configuration, list of antennas, plots of source elevation against time, and plots of
uv-coverage of each source.

- Calibration​. Plots of all calibration tables produced by the pipeline, and a summary of the
parameters used to produce ach table. Useful to quickly assess the quality of the calibration.

- Plots​. Amplitude and phase plots against time and frequency for each baseline and source, for
uncalibrated and calibrated data. Also include calibrated amplitude vs uv-distance plots.
Useful to check how the calibration changes the visibilities and understand the source
properties.

- Images​. The pipeline produces automatic images of targets and calibrators without any human
intervention. This is useful to have a first impression on the source structure and also to assess
the quality of the pipeline calibrated data.

3. Current purpose and limitations. Future plan

The pipeline is meant to be executed mostly unattended. That means that it is capable of producing
reasonably good calibration on most of the scheduled projects. In that sense, the pipeline is a tool to
quickly execute tasks with optimized parameters. However, for a final high quality scientific result the
intervention of an experienced radio astronomer is required. That being said, our experience shows
that for the most simple case, continuum C-band observations, good quality images can be obtained
with minimum human intervention, basically consisting on identifying small amounts of bad data that
the autoflagger could not eliminate.

We note that only basic calibration is performed by the pipeline. Detailed imaging and self-calibration
are not implemented, although the pipeline contain tools already available but under development that
can help to self-calibrate data. The pipeline does not have a mode to include external phase calibrator
models into the calibration process, but including a model can be done manually before starting the
calibration process, and that would not affect the pipeline operations.

Current version of the pipeline (v0.7) can deal with C- and L-band observations. It cannot
automatically calibrate K-band data, although it contains the tools to conduct the calibration with
human intervention. Also, the parameters used during the calibration are optimized for C and L band
data, and not specifically for K band.

e-MERLIN is capable of observing simultaneously in wideband continuum mode and also record high
spectral resolution data zooming in specific parts of the band. The pipeline will split the continuum
and the spectral line data into different MS. Currently, the pipeline can only calibrate continuum data,
and will not modify or calibrate the spectral line data. It is possible to run specific steps on the spectral
line data, but a full data reduction is currently not possible.

There are plans to implement a series of upgrades to the pipeline, always trying to make the changes
user friendly, and implementing procedures known to work reliable for the majority of the e-MERLIN
data as automatically as possible. Our list of priorities or features under development for the future
are:

- Self-calibration. Probably implement a stand-alone script to automatically self-calibrate
individual sources that had been previously calibrated with the main pipeline.

- Polarization calibration. We are currently investigating a general approach to include
polarization calibration in the main pipeline. If the procedure is robust, we may run it by
default in all C and L band observations.

- Spectral line calibration. There are different possible spectral observing modes and types of
sciences cases, so we are discussing what would be the best and cleanest implementation. We
will probably implement an optional automatic step in the main pipeline for the most obvious
cases, and we will prepare a set of independent tools to be run manually on more complicated
cases.

- Widefield imaging. This is not a fundamentally different step, but there are several issues that
should be taken into account when imaging wide fields. We may implement a simple mode to
generate these type of images with a generally optimized set of parameters.

Additionally, we have a partially developed mode to be used only by the observatory. This mode is
meant to calibrate automatically and daily the bright calibrators observed regularly (3C286, 3C86 and
OQ208). The idea is to have a regular QA system to monitor the performance of e-MERLIN as a
whole. We aim to monitor and update a database containing information such as array sensitivity,
antenna performance and sensitivity, phase stability, monitor RFI environment, etc.

4. Product examples

Example 1: pipeline log

Example of text written in the pipeline log eMCP.log during a-priori flagging:

Example of eMCP.log describing one section of the delay calibration step:

Example 2:
Weblog home page with general information (this page) and observation summary (next page).

Example 3: UV coverage
UV-coverage plots for a target source (top) and a phase calibrator (bottom).

Example 4: bandpass table
Bandpass calibration table for an L-band observation after autoflagging with AOFlagger. The
reference antenna is Mk2.

Example 5
Calibration tables. ​Left​: delay calibration for an L-band observation interleaving groups of 4 phase
calibrator-target pairs (color coded by source, fixed range from -20 to +20 nanosec). ​Right​: phase
solutions for the bandpass calibrator after delay and bandpass correction (color coded by spw,
reference antenna is Da).

Example 6: UV plots of calibrated data
Top​: visibility amplitude (left) and phase (right) vs uv-distance for the bandpass calibrator OQ208 at C
band, colors represent different spectral windows (IFs). ​Bottom​: the same for a 60 mJy phase reference
source at a declination of -23 degrees. In both cases the higher noise data corresponds to baselines
with the less sensitive antenna De.

Example 7: visibility plots of calibrated data
Amplitude against time (left) and frequency (right) for the bandpass calibrator OQ208 at C band for
each baseline.

Example 8: automatic imaging
Example of an automatically generated image of an L-band data set calibrated by the pipeline. The top
row shows the clean image (left) and the residuals (right). The bottom row is just a zoom of the top
row images. In this case, a 100 microJy source is clearly detected (see bottom-left plot) without any
manual processing.

5. Pipeline performance

Test 1
The test was conducted on ​flanux (12 CPU
@ 3.50GHz, 124 GB of RAM). The data set
was a 24h L-band observation including the
Lovell. The raw data has a size of 300 GB.
The complete run of the pipeline (from
reading FITS-IDI files to producing
calibrated images) took 14.2 h. We note that
automatic flagging with AOFlagger took
50% of that time, due to limitation of
memory . With more available memory, the 4

whole process would have taken about 9h.
In summary, with a machine with slightly
more memory the observation-to-process
time ratio would be below 0.4, allowing
automatic pre-processing of all e-MERLIN
data on real time.

4 As seen in the bottom plot the memory never reached the maximum of 128 GB. However, AOFlagger uses a
slower procedure that does not use memory when the available memory is not at least x2 the needed memory.

Test 2

The test was conducted on computer
richards (12 CPU @ 3.50GHz, 64 GB of
RAM). The data set is a 12h L-band
observation, 512 chan/spw and 1 sec
integration time. The original file size is
184 GB. In the split step the data are
averaged to 128 chan/spw and 2 sec
integration time. The total processing
time (not including visibility plots and
imaging) was 7.5 hours. Again, the most
relevant bottleneck is the automatic
flagging with aoflagger.

